Section 2

Introduction and Specifications

Introduction

This manual contains complete operating, maintenance and calibration instructions for the Compliance West USA MegaPulse series Impulse Tester.

- In case of trouble, the test can be immediately terminated at any time by turning the rear-panel power switch to the OFF position.
- Before the test can commence, the unit must be armed by pressing the CHARGE Button. The test will not begin until the TRIGGER Button is pushed.
- Operator instructions are printed on the rear panel for quick reference.
- Voltage is discharged by a resistor bank within the MegaPulse tester upon test completion. Discharge progress is shown on the front panel meter.

Specifications

Specifications for each individual model in the MegaPulse series are listed in Table 1. Component designations referenced in Table 1 are as shown in Figure 1.

Your Tester is warranted for a period of one year upon shipment of the instrument to the original purchaser.

Figure 1.

Model	Waveform*	Max. Voltage	C1	R1	R2	C2	R3
10x700-2.5	$10 \times 700 / 6 \times 300 \mathrm{uS}$	2500V	20 uF	50 Ohms	15 Ohms	0.2 uF	25 Ohms
10x700-7	$10 \times 700 / 6 \times 300 \mathrm{uS}$	7000 V	20 uF	50 Ohms	15 Ohms	0.2 uF	25 Ohms
$1.2 \times 50-2.5$	$1.2 \times 50 / 1 \times 20 \mathrm{uS}$	2500 V	1 uF	76 Ohms	13 Ohms	0.033 uF	25 Ohms
$1.2 \times 50-7$	$1.2 \times 50 / 1 \times 20 \mathrm{uS}$	7000 V	1 uF	76 Ohms	13 Ohms	0.033 uF	25 Ohms
$1.2 \times 50-1212 \Omega$ Fast Charge ∂	$1.2 \times 50 / 1 \times 20 u S$	12300 V	2.75 uF	40 Ohms	7 Ohms	0.05uF	0 Ohms
10x1000s-1	$10 \times 1000 / 10 \times 1000$ uS	1000 V					
10x360s-1	$10 \times 360 / 10 \times 0360 \mathrm{uS}$	1000 V					
2x10s-2.5	$2 \times 10 / 2 \times 10 \mathrm{uS}$	2500 V					
Defib-5	$20 \times 2200 / 50$ x 800 uS	5000 V	$32 \mathrm{uF} \mathrm{(1)}$	100 Ohms	50 Ohms	None (open)	0 Ohms
Antenna Surge	Not defined	10000 V	1 nF	-	1 kOhm	None (open)	-
AXVI1-2.5, -7	$1.2 \times 50 / 0 \times 7 \mathrm{uS}$	2500V, 7000 V	0.25 uF	234 Ohms	62 Ohms	7800 pF	0 Ohms
AXVI2-2.5, -7	$1.2 \times 50 / 0 \times 7 \mathrm{uS}$	2500V, 7000 V	0.25 uF	234 Ohms	45 Ohms	7800 pF	0 Ohms
AXVI3-2.5, -7	. 7 x 40/0 x 4 uS	2500V, 7000 V	0.25 uF	234 Ohms	27 Ohms	7800 pF	0 Ohms
AXVI4-2.5, -7	0 x 40/0 x 4 uS	$2500 \mathrm{~V}, 7000 \mathrm{~V}$	0.25 uF	234 Ohms	27 Ohms	None (open)	0 Ohms
AXVI5-2.5, -7	$0 \times 40 / 4 \times 40 \mathrm{uS}$	$2500 \mathrm{~V}, 7000 \mathrm{~V}$	20 uF	3 Ohms	25 Ohms	3300 pF	0 Ohms
AXVI6-2.5, -7	. $2 \times 40 / 0 \times 35 \mathrm{uS}$	2500V, 7000 V	20 uF	3 Ohms	13 Ohms	3300 pF	0 Ohms
AXVI7-2.5, -7	. $2 \times 40 / 0 \times 30 \mathrm{uS}$	2500V, 7000 V	20 uF	3 Ohms	9 Ohms	3300 pF	0 Ohms
AXVI8-2.5, -7	. $2 \times 40 / 0 \times 30 \mathrm{uS}$	$2500 \mathrm{~V}, 7000 \mathrm{~V}$	20 uF	3 Ohms	7 Ohms	3300 pF	0 Ohms
AXVI9-2.5, -7	. $1 \times 40 / 0 \times 25 \mathrm{uS}$	2500V, 7000 V	20 uF	3 Ohms	5 Ohms	3300 pF	0 Ohms
AXVI10-2.5, -7	. $08 \times 40 / 0 \times 20 \mathrm{uS}$	$2500 \mathrm{~V}, 7000 \mathrm{~V}$	20 uF	3 Ohms	3 Ohms	3300 pF	0 Ohms

* Legend: A x B/C x D A= Voltage rise time B= Voltage duration C= Current rise time D= Current duration

Voltage rise time (A) is defined as follows (per ANSI/IEEE C62.41 and other standards): trise $=1.67\left(\mathrm{t}_{90}-\mathrm{t}_{30}\right)$, where t_{90} and $\mathrm{t}_{30}=$ the times of the 90% and 30% amplitude points on the leading edge of the waveform.
Voltage duration (B) is defined (per ANSI/IEEE C62.41 and other standards) as the time between virtual origin and the time of the 50% pint on the tail. The virtual origin is the point where a straight line between the 30% and 90% points on the leading edge of the waveform intersects the $\mathrm{V}=0$ line.
Current rise time (C) is defined as follows (per ANSI/IEEE C62.41 and other standards): trise $=1.25\left(\mathrm{t}_{90}-\mathrm{t}_{10}\right)$, where t_{90} and $\mathrm{t}_{10}=$ the times of the 90% and 10% amplitude points on the leading edge of the waveform.
Current duration (D) is defined (per ANSI/IEEE C62.41 and other standards) as the time between virtual origin and the time of the 50% pint on the tail. The virtual origin is the point where a straight line between the 10% and 90% points on the leading edge of the waveform intersects the $\mathrm{I}=0$ line.
∂ Indicates Models using Compliance West USA IEC 65 Switch.
Note 1: 32 uF capacitor in series with a 500 uH inductor having a DC resistance no greater than 10 Ohms.
Common specifications:

Meter Accuracy:
2500 V output versions: $\pm 20 \mathrm{~V}$
$5000 \mathrm{~V}, 7000 \mathrm{~V}$ versions: $\pm 40 \mathrm{~V}$
All models: better than 1% of fullscale reading

Environmental:
$15-40^{\circ} \mathrm{C}$ operating temperature
$0-90 \%$ Relative Humidity, noncondensing

Electrical:

Input Voltage: $120 \mathrm{~V}, 50-60 \mathrm{~Hz}$ Input Current: 1-7 A (model specific)

Mechanical:

Weight: Approx. 16-85 lbs.
Dimensions: 11.25 "W x 12 "D x 5 "H
To 24 "W x 20 " $\mathrm{D} \times 36$ " H

Table 1. MegaPulse series specifications

